Who Benefits from State Corporate Tax Cuts? A Local Labor Markets Approach with Heterogeneous Firms

Juan Carlos Suárez Serrato Stanford University Owen Zidar UC Berkeley

March 31, 2014

The Opinion Pages | OP-ED CONTRIBUTOR The New Hork Times

Abolish the Corporate Income Tax

By LAURENCE J. KOTLIKOFF JAN. 5, 2014

I, like many economists, suspect that our corporate income tax is economically self-defeating – hurting workers, not capitalists

What can workers do to mitigate their plight? One useful step would be to lobby to eliminate the corporate income tax. That might sound like a giveaway to the rich. It's not. The rich, including Boeing's stockholders, can take their companies & run

We relax two crucial assumptions

- Firms are perfectly competitive
 - If firm owners earn zero profits, they can not bear incidence
- Firms are perfectly mobile
 - Every firm is marginal in their location decisions

We relax two crucial assumptions

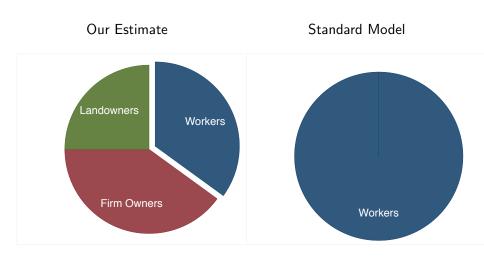
- Firms are perfectly competitive
 - If firm owners earn zero profits, they can not bear incidence
- Firms are perfectly mobile
 - Every firm is marginal in their location decisions

Allow for monopolistically competitive & heterogeneously productive firms

This Paper

 Question: What are the welfare effects of cutting corporate taxes in an open economy on workers, firm owners, and landowners?

Contributions


- 1 New evidence on business location
- 2 New framework for evaluating welfare effects
- 3 New assessment of corporate taxation in an open economy

Who Benefits from State Corporate Tax Cuts?

Our Estimate

Who Benefits from State Corporate Tax Cuts?

Context and Challenges

- Empirical: Gravelle 2011, Clausing 2013
 - Insufficient time series variation in US corporate rates
 - Cross-country variation compares countries with dissimilar institutions

• Theoretical:

- Harberger-type general equilibrium with focus on open economy (Gravelle 2010)
- Computable General Equilibrium Models (Kotlikoff & Summers 1987, Kotlikoff et. al 2013)

Outline: 3 Steps

Reduced-form effects of corporate tax cuts

- Implement state apportionment system using establishment data
- Establishment growth increases by roughly 3.5% following a 1% corporate tax cut

② Develop spatial equilibrium model with firms

- Allow workers, firm owners, landowners to bear incidence
- Map reduced-form effects to parameters governing welfare

Structural estimates and incidence

- Minimize distance between reduced-form expressions and estimates
- Evaluate consequences for equity & efficiency of corporate tax policy

Broader Contribution: Local Labor Markets with Firms

- Last few years important link between workers and location
 - Kline 2010, Moretti 2011, Busso et al 2013, Diamond 2013, Notowidigdo 2013, Suárez Serrato and Wingender 2012
- This literature and benchmark models have representative/identical, perfectly competitive firms & no link between firms and location
 - Incidence: Kotlikoff & Summers 1987, Gordon & Hines 2002
 - Locational: Rosen 1979, Roback 1982
- Monopolistically competitive and heterogeneously productive firms

Roadmap

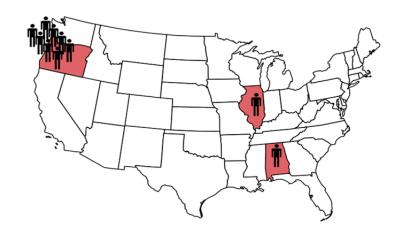
- 1 Data and Reduced-Form Analysis of Business Location
- Model
- Model-based Parameter Estimates
- Welfare Consequences & Policy Implications
- Conclusion

Data

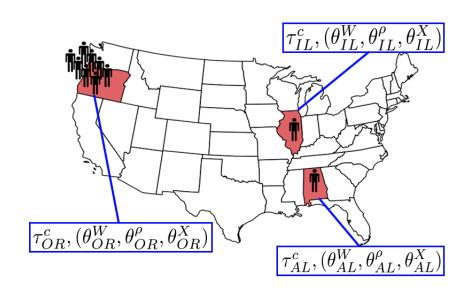
Non-Tax Data

- Annual Data
 - Number of establishments from County Business Patterns
 - Population from BEA
- Oecadal Data
 - Wage and rental cost indexes from 1980-2000 Censuses and 2009 ACS
 - Adjust for changes in composition of observable characteristics
- Geographical Level
 - Focus on county groups called consistent PUMAs [490 localities]
- Bartik: Construct Bartik shock to predict labor demand:

$$\textit{Bartik}_{c,t} = \sum_{\textit{Ind}} \mathrm{EmpShare}_{\textit{Ind},t-1,c} \times \Delta \mathrm{Emp}_{\textit{Ind},t,\mathrm{National}}$$


Three Types of Firm Taxes

- **1** Partnership and S-corps: τ^{INC} personal income tax rate
 - Synthetic changes as in Zidar (2013) using NBER's TAXSIM
- 2 Single-state C-corps: τ^c corporate income tax rate
 - Digitized corporate tax rates from "Book of the States"
- **1** Multi-state C-corps: τ^A apportioned corporate income tax rate
 - Depends on corporate rate, apportionment, and activity weights


$$\tau_i^{\mathcal{A}} = \sum_{s} \tau_s^c \omega_{is}$$

• where
$$\omega_{is} = \underbrace{\left(\theta_s^w \frac{W_{is}}{W}\right)}_{payroll} + \underbrace{\left(\theta_s^\rho \frac{R_{is}}{R}\right)}_{property} + \underbrace{\left(\theta_s^x \frac{X_{is}}{X}\right)}_{sales}$$

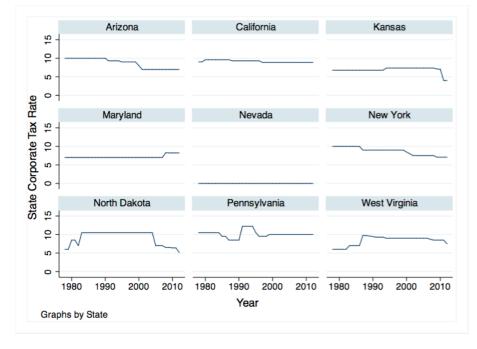
Nike Apportionment Example

Nike Apportionment Example

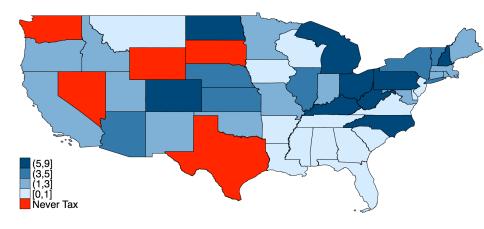
Nike Apportionment Example (2/2)

- Suppose Nike earns \$2 M of profit in every state
- Their tax liability differs based on how profits are apportioned

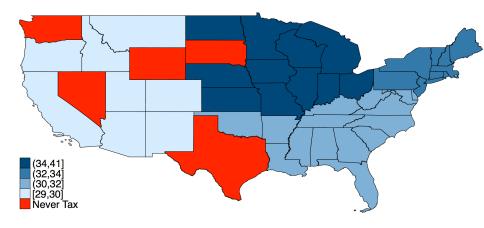
Nike Apportionment Example (2/2)

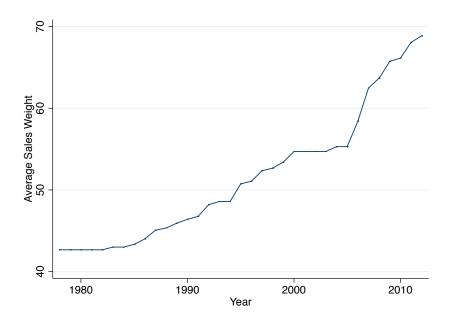

- Suppose Nike earns \$2 M of profit in every state
- Their tax liability differs based on how profits are apportioned

State	I. Using Payroll	II. Using Sales			
	Apportioned	Apportioned Profit (\$M)			
OR	80	2			
IL	10	2			
AL	10	2			


Nike Apportionment Example (2/2)

- Suppose Nike earns \$2 M of profit in every state
- Their tax liability differs based on how profits are apportioned


State	I. Using Payroll	II. Using Sales		
	Apportioned Profit (\$M)			
OR	80	2		
IL	10	2		
AL	10	2		
	Corporate Tax Liability (\$M)			
OR with $ au_{OR}^c=50\%$	40	1		
IL with $ au_{I\!L}^c=10\%$	1	0.2		
AL with $ au_{AL}^c=0\%$	0	0		
Total Tax Liability (\$M)	41	3		
5 ()				


Number of Corporate Tax Rate Changes by State: '77-'12

Number of Corporate Tax Rate Changes by Region: '77-'12

Gradual Shift Towards Sales Apportionment

Using Variation from Apportionment

Goolsbee and Maydew (Journal of Public Economics, 2000)

- ullet Use variation in payroll burden $au_s^c heta_s^w$
- Find that reducing payroll weight from 33% to 25% increases manufacturing employment by 1%

This paper

$$au_{\it i}^{\it A} = \sum_{\it s} au_{\it s}^{\it c} \omega_{\it is}$$

• where
$$\omega_{is} = \underbrace{\left(\theta_s^w \frac{W_{is}}{W}\right)}_{payroll} + \underbrace{\left(\theta_s^\rho \frac{R_{is}}{R}\right)}_{property} + \underbrace{\left(\theta_s^x \frac{X_{is}}{X}\right)}_{sales}$$

- Use RefUSA data to construct ω_{is} for each firm i
- ullet Take average of all local establishments to obtain $ar{ au}^A$

Average Business Tax Rate

 Use data on shares of establishments to calculate the average business tax in a conpsuma:

$$\Delta \ln(1 - \tau^b)_{c,t} \equiv \underbrace{f_{c,t}^{SC} \Delta \ln(1 - \tau^c)_{c,t} + f_{c,t}^{MC} \Delta \ln(1 - \bar{\tau}^A)_{c,t}}_{\text{Corporate}} + \underbrace{f_{c,t}^{P} \Delta \ln(1 - \tau^{INC})_{c,t}}_{\text{Personal}}$$

• Calculate shares $f_{c,t}^{SC}, f_{c,t}^{MC}, f_{c,t}^{P}$ using County Business Patterns and RefUSA data

Reduced-form Effects on Business Location

Business Taxes & Establishment Growth

Specification

$$\ln E_{c,t} - \ln E_{c,t-10} = \beta [\ln(1 - \tau_{c,t}^b) - \ln(1 - \tau_{c,t-10}^b)] + \mathbf{D}'_{s,t} \mathbf{\Psi}_{s,t} + u_{c,t}$$

- LHS: Establishment Growth
- RHS: Growth in net-of-business tax rate
- $\mathbf{D}_{s,t}$ is a vector of year dummies and state dummies for industrial Midwest in the 1980s

Validity of Business Tax Variation

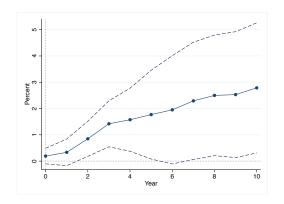
- Potential for bias due to:
 - Concomitant changes in corporate tax base, esp. tax credits
 - Concomitant changes in spending
 - Concurrent changes in productivity
 - Prior economic conditions

Business Taxes & Establishment Growth

Establishment Growth	(1)	(2)	(3)	(4)	(5)	(6)
Δ In Net-of-Business-Tax Rate	4.07**	4.14**	4.06**	3.35**	3.91**	3.24**
A.C ITC	(1.82)	(1.80)	(1.83)	(1.43)	(1.78)	(1.41)
Δ State ITC		-0.46 (0.32)				-0.17 (0.30)
Δ In Gov. Expend./Capita		(5.52)	-0.01			-0.01
Double.			(0.01)	0.50***		(0.01)
Bartik				0.59*** (0.19)		0.57*** (0.18)
Change in Other States' Taxes				(3.23)	-4.66***	-4.18***
					(1.60)	(1.43)
Fixed Effects	Year	Year	Year	Year	Year	Year
Observations	1,470	1,470	1,470	1,470	1,470	1,470
R-squared	0.472	0.475	0.472	0.491	0.481	0.500

Tax changes & growth are over 10 years. *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered by state in parentheses

Annual Establishment Growth and Business Taxes


Specification

$$\begin{split} \ln E_{c,t} - \ln E_{c,t-1} &= \sum_{h=\underline{h}}^{\overline{h}} \beta_h [\ln(1-\tau_{c,t-h}^b) - \ln(1-\tau_{c,t-1-h}^b)] \\ &\quad + \mathbf{D}_{s,t}' \mathbf{\Psi}_{s,t} + e_{c,t} \end{split}$$

Cumulative Effects

Year	Net-of-Tax Change	Cumulative Effect
2000	0.01	$eta_{f 0}$
2001	0	$\beta_0 + \beta_1$
2002	0	$\beta_0 + \beta_1 + \beta_2$
2003	0	$\beta_0 + \beta_1 + \beta_2 + \beta_3$

Cumulative Effects of Business Tax Cuts on Est. Growth

Different (Lead, Lag) Combinations

Establishment Growth	(0,5)	(2,5)	(5,5)	(0,10)	(2,10)	(5,10)	(10,10)
Cumulative Effect over 5 Years	1.51** (0.75)	1.80* (1.02)	1.59 (1.14)	1.77* (1.03)	2.38 (1.58)	2.39 (1.72)	2.34 (2.10)
Cumulative Effect over 10 Years	(0.10)	(1.02)	(1.1.)	2.79* (1.51)	3.49 (2.27)	3.49 (2.36)	3.70 (2.81)
P-value of All Lags=0: P-value of All Leads=0:	0.003	0.012 0.74	0.051 0.40	0.000	0.002 0.66	0.037 0.46	0.036 0.92

Additional Validity Tests of Business Location Estimate

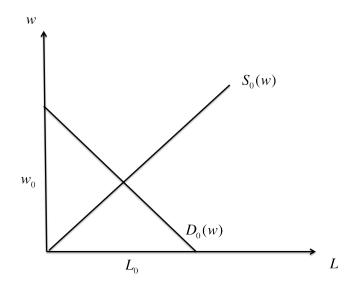
- Synthetic controls for states that change taxes
- Specifications over shorter durations that flexibly control for measures of prior economic conditions
- No detectable responsiveness of other state tax rates

Bottom Line: The approx. 3.5% effect on establishment growth over ten years is robust and economically sensible

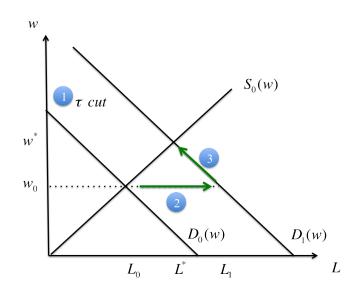
Model

A Spatial Equilibrium Model with Firms

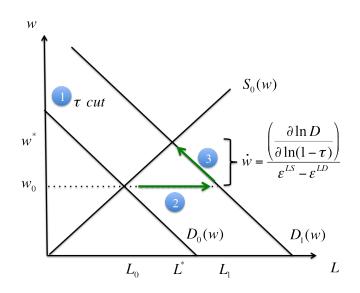
You have to start this conversation with the philosophy that businesses have more choices than they ever have before. And if you don't believe that, you say taxes don't matter. But if you do believe that, which I do, it's one of those things, along with quality of life, quality of education, quality of infrastructure, cost of labor, it's one of those things that matter.


—Delaware Governor Jack Markell (11/3/2013) ¹

¹ "Low wages 'arent what it's about anymore': Delaware's governor on bringing jobs home," *The Washington Post* 11/3/2013.


A Spatial Equilibrium Model with Firms: Outline

- Setup
- Worker Location, Labor Supply Moretti (2011), Busso et al (2013)
- Housing Market Kline (2010), Notowidigdo (2012)
- Firm Location and Labor Demand
 Dixit-Stiglitz (1977), Krugman (1979), Melitz (2003)
- **Sesults**: Incidence $\dot{w}(\theta)$, $\dot{\pi}(\theta)$, $\dot{r}(\theta)$ $\varepsilon^{LS}(\theta)$ and $\varepsilon^{LD}(\theta)$, and $\mathbf{b}(\theta)$


Equilibrium in the Local Labor Market

Equilibrium in the Local Labor Market

Equilibrium in the Local Labor Market

Model Setup

- **① Geography:** Small open economy $c \in C$
- Agents: N_c households, E_c establishments, representative landowner in each location c
- Market Structure:
 - ullet Monopolistically competitive traded goods market for each variety j
 - Global capital market
 - Local labor market
 - Local housing market
- **Timing:** Steady state, exogenous tax shock, new steady state

Household Problem

$$\max_{h,X} \quad \underbrace{\ln A}_{amenitites} + \underbrace{\alpha \ln h}_{housing} + \underbrace{(1-\alpha) \ln X}_{composite\ good} \quad s.t.\ rh + \int\limits_{j \in J} p_j x_j dj = w$$

- where $X = \left(\int\limits_{j \in J} x_j^{\frac{\varepsilon^{PD}+1}{\varepsilon^{PD}}} dj\right)^{\frac{\varepsilon^{PD}}{\varepsilon^{PD}+1}}$
- rh is housing expenditures
- $p_j x_j$ is expenditure on variety j

Household Problem

$$\max_{h,X} \quad \underbrace{\ln A}_{amenitites} + \underbrace{\alpha \ln h}_{housing} + \underbrace{(1-\alpha) \ln X}_{composite\ good} \quad s.t. \ rh + \int\limits_{j \in J} p_j x_j dj = w$$

• where
$$X = \left(\int\limits_{j \in J} x_j^{\frac{\varepsilon^{PD}+1}{\varepsilon^{PD}}} dj\right)^{\frac{\varepsilon^{PD}}{\varepsilon^{PD}+1}}$$

- rh is housing expenditures
- $p_j x_j$ is expenditure on variety j

Indirect Utility of a Worker:

$$V_{nc}^W = a_0 + \underbrace{\ln w_c - \alpha \ln r_c}_{\text{Disposable income}} + \underbrace{\ln A_{nc}}_{\text{Amenities}} = \bar{A}_c + \xi_{nc}$$

Local Labor Supply

Location choice: Workers choose location with max utility:

$$\max_{c} \underbrace{a_0 + \ln w_c - \alpha \ln r_c + \bar{A}_c}_{\equiv u_c} + \xi_{nc}.$$

Local Labor Supply

Location choice: Workers choose location with max utility:

$$\max_{c} \underbrace{a_0 + \ln w_c - \alpha \ln r_c + \bar{A}_c}_{\equiv u_c} + \xi_{nc}.$$

Local Population:

$$N_c = P\left(V_{nc}^W = \max_{c'} \{V_{nc'}^W\}\right) = \frac{\exp\frac{u_c}{\sigma^W}}{\sum_{c'} \exp\frac{u_{c'}}{\sigma^W}}$$

Local Labor Supply

Location choice: Workers choose location with max utility:

$$\max_{c} \ \underbrace{a_0 + \ln w_c - \alpha \ln r_c + \bar{A}_c}_{\equiv u_c} + \xi_{nc}.$$

Local Population:

$$N_c = P\left(V_{nc}^W = \max_{c'} \{V_{nc'}^W\}\right) = \frac{\exp\frac{u_c}{\sigma^W}}{\sum_{c'} \exp\frac{u_{c'}}{\sigma^W}}$$

(Log) Local Labor Supply:

$$\ln N_c(w_c, r_c; \bar{A}_c) = \frac{1}{\sigma^W} \left(\ln w_c - \alpha \ln r_c + \bar{A}_c \right) + C_0$$

Key Parameter: σ^{W} , dispersion of idiosyncratic preferences ξ_{nc}

Housing Market

Housing Market: Upward-sloping supply of housing:

$$H_c^S = (B_c^H r_c)^{\eta_c}$$

- B_c^H is housing productivity
- r_c is price of housing

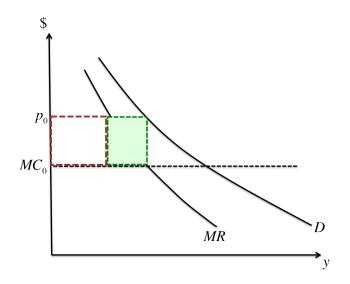
With Cobb-Douglas H_c^D , HM equilibrium given by:

$$\ln r_c = \frac{1}{1 + \eta_c} \underbrace{\left(\ln N_c + \ln w_c \right)}_{Housing Demand} + C_1$$

Key Parameter: η_c elasticity of housing supply

Local Labor Supply: Key points

- People move into a local area when wages increase
- How many people move in depends on:


 - 2 Housing Supply Elasticity η_c Lower η_c means rents get bid up more when people move in

Higher σ^W and lower η_c make ε^{LS} smaller, so LS is more vertical

Establishment Location and Local Labor Demand

- Objectives of the demand side of the model are:
 - Allow for economic profits
 Driven by monopolistically competitive, heterogeneously productive firms
 - Allow for firm mobility to compete away profits Mobility driven by heterogeneous idiosyncratic location-specific productivities
 - Oapture realism of state corporate system (in paper)
 Apportionment formulas affect marginal factor costs and labor demand

Establishment Production

Local Labor Demand: Establishment Production

• Demand for variety j is $y_{jc} = I\left(\frac{p_{jc}}{P}\right)^{arepsilon^{PD}}$

Local Labor Demand: Establishment Production

- Demand for variety j is $y_{jc} = I\left(\frac{p_{jc}}{P}\right)^{\varepsilon^{PD}}$
- \bullet Establishment j produces its variety with the following technology

$$y_{jc} = \underbrace{B_{jc}}_{\equiv \bar{B}_c + \zeta_{jc}} I_{jc}^{\gamma} k_{jc}^{\delta} M_{jc}^{1 - \gamma - \delta}$$

Local Labor Demand: Establishment Production

- Demand for variety j is $y_{jc} = I\left(\frac{p_{jc}}{P}\right)^{\varepsilon^{PD}}$
- Establishment *j* produces its variety with the following technology

$$y_{jc} = \underbrace{B_{jc}}_{\equiv \bar{B}_c + \zeta_{jc}} I_{jc}^{\gamma} k_{jc}^{\delta} M_{jc}^{1 - \gamma - \delta}$$

Firm Value Function

$$V_{jc}^{F} = \underbrace{\frac{\ln(1 - \tau_{s}^{b})}{-(\varepsilon^{PD} + 1)}}_{\text{Taxes}} - \underbrace{\frac{\text{Factor Prices}}{\gamma \ln w_{c} - \delta \ln \rho} + \overline{B}_{c}}_{\text{Factor Prices}} + \zeta_{jc}.$$

Location Choice & Local Establishment Shares

Fraction of Establishments:

$$E_c = P\left(V_{jc}^F = \max_{c'} \{V_{jc'}^F\}\right) = \frac{\exp\frac{v_c}{\sigma^F}}{\sum_{c'} \exp\frac{v_{c'}}{\sigma^F}}$$

Location Choice & Local Establishment Shares

Fraction of Establishments:

$$E_c = P\left(V_{jc}^F = \max_{c'} \{V_{jc'}^F\}\right) = \frac{\exp\frac{V_c}{\sigma^F}}{\sum_{c'} \exp\frac{V_{c'}}{\sigma^F}}$$

Establishment Growth:

$$\Delta \ln E_{c,t} = \frac{\Delta \ln(1 - \tau_{c,t}^b)}{-\sigma^F(\varepsilon^{PD} + 1)} - \frac{\gamma}{\sigma^F} \Delta \ln w_{c,t} + \phi_t + \frac{1}{\sigma^F} \Delta \bar{B}_{c,t}$$

Key Parameter:

- Dispersion of idiosyncratic productivity σ^F
- Larger σ^F means lower responsiveness to tax changes

Local Labor Demand

Aggregate labor demand for firms in location c:

$$L_c^D = \underbrace{E_c}_{\text{Extensive margin}} \times \underbrace{\mathbb{E}_{\zeta}[I^*(\zeta_{jc})|c]}_{\text{Intensive margin}}$$

Elasticity of labor demand:

$$\frac{\partial \ln L_c^D}{\partial \ln w_c} = \gamma \left(\epsilon^{PD} + 1 - \frac{1}{\sigma^F} \right) - 1 \equiv \varepsilon^{LD}$$

More elastic ε^{LD} when:

- ullet Higher output elasticity of labor γ
- ullet Higher product demand elasticity ϵ^{PD}
- Lower productivity dispersion σ^F (i.e. firms more mobile)

Result: Local Incidence of State Corporate Taxes (1/2)

• Let $\dot{w}_c(\theta) \equiv \frac{\partial \ln w_c}{\partial \ln(1-\tau^b)}$. Incidence on wages is:

$$\dot{w}_{c}(\theta) = \frac{-\frac{1}{(\varepsilon^{PD}+1)\sigma^{F}}}{\underbrace{\left(\frac{1+\eta_{c}-\alpha}{\sigma^{W}(1+\eta_{c})+\alpha}\right)}_{\varepsilon^{LS}} - \underbrace{\gamma\left(\epsilon^{PD}+1-\frac{1}{\sigma^{F}}\right)+1}_{\varepsilon^{LD}}}$$

Smaller wage increase if:

- **1** Productivity Dispersion σ^F is large (i.e. immobile firms)
- **2** Preferences Dispersion σ^W is small (i.e. mobile people)
- **3** Any other reason why ε^{LS} and $|\varepsilon^{LD}|$ are large

Result: Local Incidence of State Corporate Taxes (2/2)

Rental Costs:
$$\dot{r}_c(\theta) = \left(\frac{1+\varepsilon^{LS}}{1+\eta_c}\right) \dot{w}_c$$

• Smaller rent increases if housing supply is very elastic

Firm Profits:

$$\dot{\pi}_{c}(\theta) = 1 \underbrace{-\delta(\varepsilon^{PD} + 1)}_{\text{Reducing Capital Wedge}} + \underbrace{\gamma(\varepsilon^{PD} + 1)\dot{w}_{c}}_{\text{Higher Labor Costs}}$$

Mechanical effects vs. higher production costs

Sufficient Statistics for Incidence of Corporate Tax Cut

Stakeholder	Benefit	Sufficient Statistic
Workers	Disposable Income	$\dot{\mathbf{w}}_{\mathbf{c}} - \alpha \dot{\mathbf{r}}_{\mathbf{c}}$
Landowners	Housing Costs	\dot{r}_c
		00
Firm Owners	After-tax Profit	$1 - \delta(\varepsilon^{PD} + 1) + \gamma(\varepsilon^{PD} + 1)\dot{w}_c$

Empirical Implementation of Model

Empirical Implementation of Model: Overview

- 4 Parameters of interest
- 4 Simultaneous equations with the following outcomes:
 - Establishment Growth
 - Population Growth
 - Wage Growth
 - Rental Cost Growth
- RF effects of **Taxes** on **4 Outcomes** to estimate σ^F , σ^W , η
- Enhance precision with supplement labor demand (Bartik) Shocks
 - **1** RF effects of **Both Shocks** on **4 Outcomes** $\Rightarrow \sigma^F$, σ^W , η
 - **2** RF effects of **Both Shocks** on **4 Outcomes** $\Rightarrow \sigma^F$, σ^W , η , ε^{PD}

Parameters θ

1. Estimated Parameters

- **1** Productivity Dispersion σ^F
- 2 Preference Dispersion σ^W
- **3** Housing Supply Elasticity η
- **9** Product Demand Elasticity ε^{PD}

2. Calibrated Parameters

- \bullet Housing expenditure share $\alpha=.3$ from Consumer Expenditure Survey
- ullet Output Elasticity of Labor $\gamma \in [.1, .3]$ from IRS, BEA
- \bullet Output Elasticity of Capital $\delta = .9 \gamma$ from BEA residual of L, M

4 Reduced-Form Equations of the Model

Effects on establishments, pop., wages, & rental cost growth over 10 years

$$\begin{split} &\Delta \ln E_{c,t} = \underbrace{\left(\frac{1}{-\sigma^F \left(\varepsilon^{PD}+1\right)} - \frac{\gamma}{\sigma^F} \dot{w}(\theta)\right)}_{\beta^E} \Delta \ln (1-\tau^b_{c,t}) + \phi^1_t + u^1_{c,t} \\ &\Delta \ln N_{c,t} = \underbrace{\left(\varepsilon^{LS} \dot{w}(\theta)\right)}_{\beta^N} \Delta \ln (1-\tau^b_{c,t}) + \phi^2_t + u^2_{c,t} \\ &\Delta \ln w_{c,t} = \underbrace{\left(\dot{w}(\theta)\right)}_{\beta^W} \Delta \ln (1-\tau^b_{c,t}) + \phi^3_t + u^3_{c,t} \\ &\Delta \ln r_{c,t} = \underbrace{\left(\frac{1+\varepsilon^{LS}}{1+\eta_c} \dot{w}(\theta)\right)}_{\beta^W} \Delta \ln (1-\tau^b_{c,t}) + \phi^4_t + u^4_{c,t} \end{split}$$

Zoom in on Local Establishment Growth

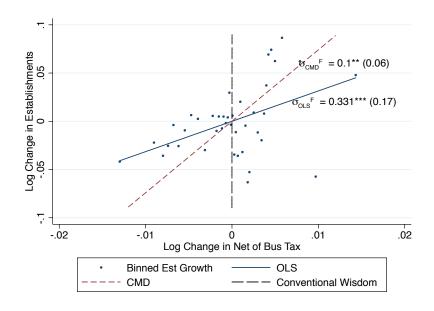
Establishment Equation:

$$\Delta \ln E_{c,t} = \underbrace{\left(\frac{1}{-\sigma^F(\varepsilon^{PD}+1)} - \frac{\gamma}{\sigma^F}\dot{w}(\theta)\right)}_{\beta^E} \Delta \ln(1-\tau^b_{c,t}) + \phi^1_t + u^1_{c,t}$$

Zoom in on Local Establishment Growth

Establishment Equation:

$$\Delta \ln E_{c,t} = \underbrace{\left(\frac{1}{-\sigma^F(\varepsilon^{PD}+1)} - \frac{\gamma}{\sigma^F}\dot{w}(\theta)\right)}_{\beta^E} \Delta \ln(1-\tau^b_{c,t}) + \phi^1_t + u^1_{c,t}$$


Business tax changes have two effects on establishment location decisions:

- 1 Lower taxes attract establishments $\frac{1}{-\sigma^F(\varepsilon^{PD}+1)} > 0$
- ② More establishments bid up wages $\frac{\gamma}{\sigma^F}\dot{w}(\theta)>0$

Implication:

• Bivariate OLS estimate on taxes $\beta^{E} \neq \frac{1}{-\sigma^{F}(\varepsilon^{PD}+1)}$.

Given parameters $(\sigma^W, \eta, \gamma, \varepsilon^{PD})$ and $\hat{\beta}^E$, estimate σ^F

4 Reduced-Form Equations of the Model

Effects on establishments, pop., wages, & rental cost growth over 10 years

$$\begin{split} &\Delta \ln E_{c,t} = \underbrace{\left(\frac{1}{-\sigma^F \left(\varepsilon^{PD}+1\right)} - \frac{\gamma}{\sigma^F} \dot{w}(\theta)\right)}_{\beta^E} \Delta \ln (1-\tau^b_{c,t}) + \phi^1_t + u^1_{c,t} \\ &\Delta \ln N_{c,t} = \underbrace{\left(\varepsilon^{LS} \dot{w}(\theta)\right)}_{\beta^N} \Delta \ln (1-\tau^b_{c,t}) + \phi^2_t + u^2_{c,t} \\ &\Delta \ln w_{c,t} = \underbrace{\left(\dot{w}(\theta)\right)}_{\beta^W} \Delta \ln (1-\tau^b_{c,t}) + \phi^3_t + u^3_{c,t} \\ &\Delta \ln r_{c,t} = \underbrace{\left(\frac{1+\varepsilon^{LS}}{1+\eta_c} \dot{w}(\theta)\right)}_{\beta^W} \Delta \ln (1-\tau^b_{c,t}) + \phi^4_t + u^4_{c,t} \end{split}$$

SEM: Empirical Implementation

1. Reduced Form: Estimate reduced form $\hat{\boldsymbol{b}}$ and covariance $\hat{\boldsymbol{V}}$

SEM: Empirical Implementation

- 1. Reduced Form: Estimate reduced form $\hat{\boldsymbol{b}}$ and covariance $\hat{\boldsymbol{V}}$
- 2. Recover Structural Parameters via Classical Minimum Distance:

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \Theta} \ [\hat{\mathbf{b}} - \mathbf{m}(\boldsymbol{\theta})]' \hat{\mathbf{V}}^{-1} [\hat{\mathbf{b}} - \mathbf{m}(\boldsymbol{\theta})]$$

SEM: Empirical Implementation

- 1. Reduced Form: Estimate reduced form $\hat{\mathbf{b}}$ and covariance $\hat{\mathbf{V}}$
- 2. Recover Structural Parameters via Classical Minimum Distance:

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \Theta} \ [\hat{\mathbf{b}} - \mathbf{m}(\boldsymbol{\theta})]' \hat{\mathbf{V}}^{-1} [\hat{\mathbf{b}} - \mathbf{m}(\boldsymbol{\theta})]$$

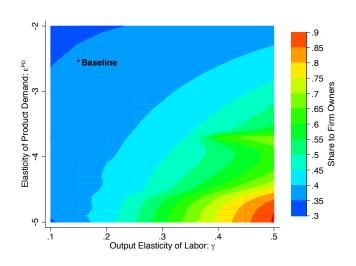
Results:				
	Establishments	Population	Wage	Rent
Business Tax				
Predicted Moments	4.084	2.323	1.438	1.159
Empirical Moments	4.074**	2.331	1.451	1.172
	(1.80)	(1.46)	(0.94)	(1.42)
	•	. ,		. ,
$\chi^2(1)$ Stat	0.001	χ^2 P-Value	0.979	

Enhancing precision with supplemental LD shocks

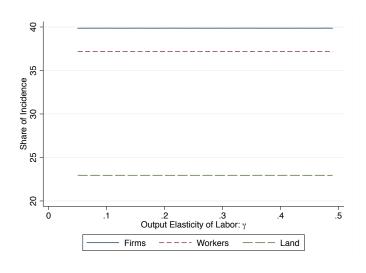
Effects on establishments, pop., wages, & rental cost growth over 10 years

$$\begin{split} &\Delta \ln E_{c,t} = b_1 \Delta \ln (1 - \tau_{c,t}^b) + b_5 \textit{Bartik}_{c,t} + \tilde{\phi}_t^1 + \tilde{u}_{c,t}^1 \\ &\Delta \ln \textit{N}_{c,t} = b_2 \Delta \ln (1 - \tau_{c,t}^b) + b_6 \textit{Bartik}_{c,t} + \tilde{\phi}_t^2 + \tilde{u}_{c,t}^2 \\ &\Delta \ln \textit{w}_{c,t} = b_3 \Delta \ln (1 - \tau_{c,t}^b) + b_7 \textit{Bartik}_{c,t} + \tilde{\phi}_t^3 + \tilde{u}_{c,t}^3 \\ &\Delta \ln \textit{r}_{c,t} = b_4 \Delta \ln (1 - \tau_{c,t}^b) + b_8 \textit{Bartik}_{c,t} + \tilde{\phi}_t^4 + \tilde{u}_{c,t}^4 \end{split}$$

8 Moments from Tax and Bartik Shocks


Bartik and Tax Shock ($\gamma=.15, arepsilon^{PD}=-2.5$)						
	Rent					
Business Tax						
Predicted Moments	2.783	1.300	1.211	0.724		
Empirical Moments	3.354**	1.743	0.777	0.323		
	(1.41)	(1.27)	(0.83)	(1.35)		
Bartik						
Predicted Moments	0.542	0.453	0.568	0.740		
Empirical Moments	0.595***	0.445**	0.557***	0.702***		
	(0.19)	(0.18)	(80.0)	(0.27)		
$\chi^2(2)$ Stat	0.569	χ^2 P-Value	0.752			

Note: $\hat{\sigma}^F = 0.17^*(0.10)$, $\hat{\sigma}^W = 0.77^{**}(0.31)$, $\hat{\eta} = 2.47(5.10)$


Estimates of Economic Incidence

	Incidence		Sha	Shares of Incidence		
	(1)	(2)	(3)	(4)	(5)	(6)
Calibrated Parameters	Tax Only	Tax &	Bartik	Tax Only	Tax &	Bartik
Output Elasticity γ	0.15	0.15	0.15	0.15	0.15	0.15
Elasticity of Product	-2.500	-2.500	-6.852	-2.500	-2.500	-6.852
Demand $arepsilon^{PD}$			(10.337)			(10.337)
			, ,			
Estimated Parameters						
Wages \dot{w}	1.438*	1.211**	1.004			
	(0.798)	(0.592)	(0.708)			
	4.450	0.704	0.500	0.074	0.070	0.000
Landowners <i>r</i>	1.159	0.724	0.523	0.371	0.273	0.230
	(1.329)	(1.241)	(1.298)	(0.251)	(0.338)	(0.463)
Workers $\dot{w} = \alpha \dot{r}$	1.090**	0.994***	0.847**	0.348***	0.375***	0.372**
vvorkers $w - \alpha r$						
	(0.476)	(0.316)	(0.419)	(0.105)	(0.145)	(0.152)
F: :	0.070***	0.020***	0.000*	0.201	0.251	0.200
Firm Owners $\dot{\pi}$	0.879***	0.930***	0.908*	0.281	0.351	0.399
	(0.180)	(0.133)	(0.512)	(0.191)	(0.220)	(0.405)

Firm Owner's Share of Incidence for Calibrated Values of γ and ε^{PD}

Shares of Incidence for Calibrated Values of γ and Estimated ε^{PD}

Sufficient Statistics for Incidence of Corporate Tax Cut

Stakeholder	Benefit	Sufficient Statistic		
Workers	Disposable Income	$\hat{\beta}^W - \alpha \hat{\beta}^R$		
Landowners	Housing Costs	\hat{eta}^{R}		
Firm Owners	After-tax Profit	$1 + \underbrace{\left(\frac{\hat{\beta}^{N} - \hat{\beta}^{E}}{\hat{\beta}^{W}} + 1\right)}_{=\frac{2.3 - 4.1}{1.4} + 1 = -1.3 + 1} (\hat{\beta}^{W} - \frac{\delta}{\gamma})$		

Note that
$$\left(rac{eta^{\it N} - eta^{\it E}}{eta^{\it W}} + 1
ight) = \gamma (arepsilon^{\it PD} + 1)$$

Behavioral Responses and Efficiency

Q: If businesses aren't that responsive, then why do we observe low state corporate taxes?

Behavioral Responses and Efficiency

Q: If businesses aren't that responsive, then why do we observe low state corporate taxes?

- Fiscal externalities, not mobility may explain why states have low rates
- Amenable feature of state corporate tax system

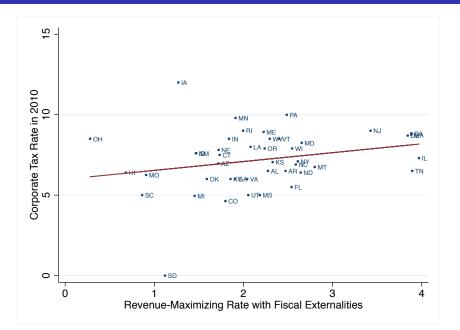
Revenue-Maximizing Corporate Tax Rate

If states wanted to maximize corporate tax revenues, the maximal tax rate would be:

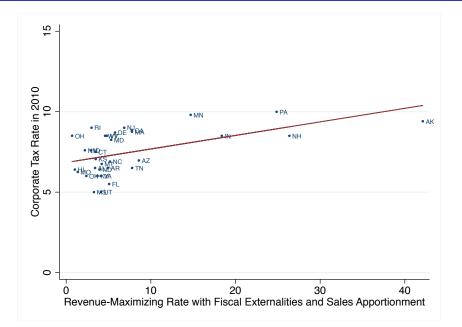
$$\tau_c^* = \frac{1}{\dot{\bar{\pi}}_c + \dot{E}_c}$$

Revenue-Maximizing Corporate Tax Rate

If states wanted to maximize corporate tax revenues, the maximal tax rate would be:


$$\tau_c^* = \frac{1}{\dot{\bar{\pi}}_c + \dot{E}_c}$$

 However, this rate doesn't account for fiscal externalities from other taxes (or from other spending)


$$\tau_c^{**} = \frac{1}{\dot{\bar{\pi}}_c + \dot{E}_c + (\text{revshare}_c^{\text{pers}}/\text{revshare}_c^C)(\dot{w}_c + \dot{N}_c)},$$

- **3** Depends on size of location (e.g. states versus cities). It is likely that more local \Rightarrow smaller $\sigma^F \Rightarrow$ smaller t^*
- Depends on policy design: source based versus destination based

Corporate Rates vs Revmax Rate w/ Fiscal Externalities

Rates, Fiscal Externalities, and Apportionment

Revenue-Maximizing Corporate Tax Rates

	Sales Apport.	Corporate	Revenue Max. Corp. Rate		
State	Weight θ_s^x	Tax Rate $ au_s$	$\overline{ au_{s}^{*}}$	$ au_{s}^{**}$	$ au_s^{**}/(1- heta_s^{\scriptscriptstyle X})$
Kansas	33	7.1	36.9	2.3	3.5
Indiana	90	8.5	40.3	1.8	18.4
U.S. Avg	66.1	6.7	38.8	3.0	7.5
U.S. Med	50.0	7.1	38.3	2.2	4.6
U.S. Min	33.3	0.0	33.8	0.3	0.7
U.S. Max	100.0	12.0	46.6	28.1	42.1

Conclusion

Conventional view: corporate taxation in an open economy hurts workers since "shareholders can take their companies and run"

- New Measure of Local Business Taxes
- New Reduced Form-Effects
- New Tractable Spatial Equilibrium Framework with Firms

Conclusion

Conventional view: corporate taxation in an open economy hurts workers since "shareholders can take their companies and run"

- New Measure of Local Business Taxes
- New Reduced Form-Effects
- New Tractable Spatial Equilibrium Framework with Firms

New Assessment: in terms of equity and efficiency, corporate taxation in an open economy may not be as bad as we thought